之前在“复数,通往真理的最短路径”中说过,复数域其实就是二维的数域,提供了更高维度的、更抽象的视角。本文来看看,我们是怎么从实数域扩展到复数域的。
大家可能觉得这个扩展并不复杂,也就是
但数域的扩张从来没有这么简单,就好像夫妻生下小孩只是个开始,困难的是之后的抚养、教育:
复数域的扩张充满崎岖。正如欧拉的老师对他的赞扬:
这句话虽然是说微积分(数学分析)的,但用在复数域上也不违和。欧拉的欧拉公式正是“复数域”的成人礼:
来看看之前的数域是怎么扩张的吧。每次想到数域的扩张,我都有种大爆炸的画面感,宇宙从一个奇点爆炸中产生:
数学刚开始也是一片空白:
0的出现就是数学的奇点:
根据皮亚诺定理(可以参考为什么1+1=2?)“爆炸”出了自然数域(可以参考自然数是否包含0?):
很显然上面的图像是不对称的,哪怕出于美学考虑,人们都有冲动把左边补齐,增加负数,这样就得到了整数域:
添加负数之后,有一个问题就出现了:
我们知道
我们添加负数之后,希望这个规则依然适用,即:
更一般的有:
并且还惊喜地发掘出负数次方的意义,如果说正数次方是对乘法的缩写,那么负数次方(正数的相反数)是对除法(乘法的逆运算)的缩写:
很显然整数之间还有很多空隙,我们可以用有理数(rational number,翻译为“可比数”更合理):
来填满这些空隙(示意图):
还有空隙,最终用无理数(irrational number,“不可比数”)来填满这些缝隙,得到实数轴:
自然会有这么一个问题:
往下面讲之前,稍微复习下复数的一些基础知识。
复数的运算规则并非凭空捏造的。开头提到的文章“复数,通往真理的最短路径”说过,形如:
的三次方程,卡尔丹诺在《大术》这本书中给出了通解:
如果
从图像上看,