在这里给大家贴上冷咖啡的解答
$$\displaystyle a_ n=cos(\pi \sqrt{n^2+n})$$
$$\displaystyle =(-1)^ ncos(n\pi -\pi \sqrt{n^2+n})$$
$$\displaystyle =(-1)^ ncos(-\frac{n\pi }{n+\sqrt{n^2+n}})$$
$$\displaystyle \lim _{n \to \infty }\frac{-n\pi }{n+\sqrt{n^2+n}}=-\frac{\pi }{2}$$
$$\displaystyle \lim _{n \to \infty }a_ n=(-1)^ ncos(-\frac{\pi }{2})=0$$