A:
$\displaystyle \frac{sin(2x)dx+sin(2y)dy}{sin(2z)}$
B:
$\displaystyle -\frac{sin(2x)dx+sin(2y)dy}{sin(2z)}$
C:
$\displaystyle \frac{sin(2x)dx-sin(2y)dy}{sin(2z)}$
D:
$\displaystyle -\frac{sin(2x)dx-sin(2y)dy}{sin(2z)}$
解:
$$(-2cosxsinxdx)+(-2cosysinydy)+(-2coszsinzdz)=0$$
$$-sin(2x)dx-sin(2y)dy-sin(2z)dz=0$$
$$dz=-\frac{sin(2x)dx+sin(2y)dy}{sin(2z)}$$