8月24日向量计算

不共线的三个非零向量$\vec{a},\vec{b},\vec{c}$是,满足:
$$\displaystyle (\vec{a}\times \vec{b})\times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}|\vec{a}$$
.
设$\theta $为$\vec{b},\vec{c}$的夹角,那么$sin\theta $为:
A:
$\displaystyle \frac{-2\sqrt{2}}{3}$
B:
$\displaystyle \frac{2}{3}$
C:
$\displaystyle \frac{2\sqrt{2}}{3}$
D:
$\displaystyle \frac{-2\sqrt{2}}{3}$
$$\displaystyle (\vec{a}\times \vec{b})\times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}|\vec{a}$$
.
根据二重外积公式:
$$\displaystyle (\vec{a}\cdot \vec{c})\vec{b}-(\vec{b}\cdot \vec{c})\vec{a}=\frac{1}{3}|\vec{b}||\vec{c}|\vec{a}$$
$$\displaystyle \Rightarrow (\vec{a}\cdot \vec{c})\vec{b}-(\vec{b}\cdot \vec{c}+\frac{1}{3}|\vec{b}||\vec{c}|)\vec{a}=0$$
因为$\vec{a},\vec{b},\vec{c}$不共线.
$$\displaystyle \Rightarrow (\vec{a}\cdot \vec{c})=0,(\vec{b}\cdot \vec{c}+\frac{1}{3}|\vec{b}||\vec{c}|)=0$$
下面利用点积的定义,可以得到
$$|\vec{b}|\cdot |\vec{c}|cos\theta +\frac{1}{3}|\vec{b}||\vec{c}|=0$$
$$\displaystyle \Rightarrow cos\theta =-\frac{1}{3}$$
$$\displaystyle \Rightarrow sin\theta =\sqrt{1-cos^2\theta }=\frac{2\sqrt{2}}{3}$$
关注马同学
马同学高等数学
微信公众号:matongxue314