本文会继续介绍拉格朗日乘子法的细节,以及对其进行适当的推广(也就是所谓的KKT条件)。
1.1 直观
根据梯度的意义(参看
如何理解梯度)可知,在函数
%3C%2Ftitle%3E%0A%3Cdefs%20aria-hidden%3D%22true%22%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-66%22%20d%3D%22M118%20-162Q120%20-162%20124%20-164T135%20-167T147%20-168Q160%20-168%20171%20-155T187%20-126Q197%20-99%20221%2027T267%20267T289%20382V385H242Q195%20385%20192%20387Q188%20390%20188%20397L195%20425Q197%20430%20203%20430T250%20431Q298%20431%20298%20432Q298%20434%20307%20482T319%20540Q356%20705%20465%20705Q502%20703%20526%20683T550%20630Q550%20594%20529%20578T487%20561Q443%20561%20443%20603Q443%20622%20454%20636T478%20657L487%20662Q471%20668%20457%20668Q445%20668%20434%20658T419%20630Q412%20601%20403%20552T387%20469T380%20433Q380%20431%20435%20431Q480%20431%20487%20430T498%20424Q499%20420%20496%20407T491%20391Q489%20386%20482%20386T428%20385H372L349%20263Q301%2015%20282%20-47Q255%20-132%20212%20-173Q175%20-205%20139%20-205Q107%20-205%2081%20-186T55%20-132Q55%20-95%2076%20-78T118%20-61Q162%20-61%20162%20-103Q162%20-122%20151%20-136T127%20-157L118%20-162Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-28%22%20d%3D%22M94%20250Q94%20319%20104%20381T127%20488T164%20576T202%20643T244%20695T277%20729T302%20750H315H319Q333%20750%20333%20741Q333%20738%20316%20720T275%20667T226%20581T184%20443T167%20250T184%2058T225%20-81T274%20-167T316%20-220T333%20-241Q333%20-250%20318%20-250H315H302L274%20-226Q180%20-141%20137%20-14T94%20250Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-78%22%20d%3D%22M52%20289Q59%20331%20106%20386T222%20442Q257%20442%20286%20424T329%20379Q371%20442%20430%20442Q467%20442%20494%20420T522%20361Q522%20332%20508%20314T481%20292T458%20288Q439%20288%20427%20299T415%20328Q415%20374%20465%20391Q454%20404%20425%20404Q412%20404%20406%20402Q368%20386%20350%20336Q290%20115%20290%2078Q290%2050%20306%2038T341%2026Q378%2026%20414%2059T463%20140Q466%20150%20469%20151T485%20153H489Q504%20153%20504%20145Q504%20144%20502%20134Q486%2077%20440%2033T333%20-11Q263%20-11%20227%2052Q186%20-10%20133%20-10H127Q78%20-10%2057%2016T35%2071Q35%20103%2054%20123T99%20143Q142%20143%20142%20101Q142%2081%20130%2066T107%2046T94%2041L91%2040Q91%2039%2097%2036T113%2029T132%2026Q168%2026%20194%2071Q203%2087%20217%20139T245%20247T261%20313Q266%20340%20266%20352Q266%20380%20251%20392T217%20404Q177%20404%20142%20372T93%20290Q91%20281%2088%20280T72%20278H58Q52%20284%2052%20289Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-29%22%20d%3D%22M60%20749L64%20750Q69%20750%2074%20750H86L114%20726Q208%20641%20251%20514T294%20250Q294%20182%20284%20119T261%2012T224%20-76T186%20-143T145%20-194T113%20-227T90%20-246Q87%20-249%2086%20-250H74Q66%20-250%2063%20-250T58%20-247T55%20-238Q56%20-237%2066%20-225Q221%20-64%20221%20250T66%20725Q56%20737%2055%20738Q55%20746%2060%20749Z%22%3E%3C%2Fpath%3E%0A%3C%2Fdefs%3E%0A%3Cg%20stroke%3D%22currentColor%22%20fill%3D%22currentColor%22%20stroke-width%3D%220%22%20transform%3D%22matrix(1%200%200%20-1%200%200)%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-66%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(550%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(940%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-78%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(1512%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
的极值点梯度为0:
1.2 代数
要求(
%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-mtext%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-6D%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-69%22%20x%3D%22833%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-6E%22%20x%3D%221112%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-69%22%20x%3D%221668%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-6D%22%20x%3D%221947%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-69%22%20x%3D%222780%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-7A%22%20x%3D%223059%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-65%22%20x%3D%223503%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
的意思是求极小值):
只需解如下方程:
2.1 直观
要求方程
%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-msubsup%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-78%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mn%22%20transform%3D%22translate(572%2C412)%22%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(1026%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-79%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(1746%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2212%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mn%22%20transform%3D%22translate(2746%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-33%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(3525%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mn%22%20transform%3D%22translate(4581%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-30%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
与原点的最小距离:
问题被转化为了同心圆与
%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-msubsup%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-78%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mn%22%20transform%3D%22translate(572%2C412)%22%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(1026%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-79%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(1746%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2212%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mn%22%20transform%3D%22translate(2746%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-33%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(3525%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mn%22%20transform%3D%22translate(4581%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-30%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
什么时候相切:
相切就是在极小值点有相同的切线:
只要能通过数学把相切这个条件表示出来,就可以得到解。
我们把同心圆可以看作凸函数
%3Dx%5E2%2By%5E2%3C%2Ftitle%3E%0A%3Cdefs%20aria-hidden%3D%22true%22%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-66%22%20d%3D%22M118%20-162Q120%20-162%20124%20-164T135%20-167T147%20-168Q160%20-168%20171%20-155T187%20-126Q197%20-99%20221%2027T267%20267T289%20382V385H242Q195%20385%20192%20387Q188%20390%20188%20397L195%20425Q197%20430%20203%20430T250%20431Q298%20431%20298%20432Q298%20434%20307%20482T319%20540Q356%20705%20465%20705Q502%20703%20526%20683T550%20630Q550%20594%20529%20578T487%20561Q443%20561%20443%20603Q443%20622%20454%20636T478%20657L487%20662Q471%20668%20457%20668Q445%20668%20434%20658T419%20630Q412%20601%20403%20552T387%20469T380%20433Q380%20431%20435%20431Q480%20431%20487%20430T498%20424Q499%20420%20496%20407T491%20391Q489%20386%20482%20386T428%20385H372L349%20263Q301%2015%20282%20-47Q255%20-132%20212%20-173Q175%20-205%20139%20-205Q107%20-205%2081%20-186T55%20-132Q55%20-95%2076%20-78T118%20-61Q162%20-61%20162%20-103Q162%20-122%20151%20-136T127%20-157L118%20-162Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-28%22%20d%3D%22M94%20250Q94%20319%20104%20381T127%20488T164%20576T202%20643T244%20695T277%20729T302%20750H315H319Q333%20750%20333%20741Q333%20738%20316%20720T275%20667T226%20581T184%20443T167%20250T184%2058T225%20-81T274%20-167T316%20-220T333%20-241Q333%20-250%20318%20-250H315H302L274%20-226Q180%20-141%20137%20-14T94%20250Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-78%22%20d%3D%22M52%20289Q59%20331%20106%20386T222%20442Q257%20442%20286%20424T329%20379Q371%20442%20430%20442Q467%20442%20494%20420T522%20361Q522%20332%20508%20314T481%20292T458%20288Q439%20288%20427%20299T415%20328Q415%20374%20465%20391Q454%20404%20425%20404Q412%20404%20406%20402Q368%20386%20350%20336Q290%20115%20290%2078Q290%2050%20306%2038T341%2026Q378%2026%20414%2059T463%20140Q466%20150%20469%20151T485%20153H489Q504%20153%20504%20145Q504%20144%20502%20134Q486%2077%20440%2033T333%20-11Q263%20-11%20227%2052Q186%20-10%20133%20-10H127Q78%20-10%2057%2016T35%2071Q35%20103%2054%20123T99%20143Q142%20143%20142%20101Q142%2081%20130%2066T107%2046T94%2041L91%2040Q91%2039%2097%2036T113%2029T132%2026Q168%2026%20194%2071Q203%2087%20217%20139T245%20247T261%20313Q266%20340%20266%20352Q266%20380%20251%20392T217%20404Q177%20404%20142%20372T93%20290Q91%20281%2088%20280T72%20278H58Q52%20284%2052%20289Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-2C%22%20d%3D%22M78%2035T78%2060T94%20103T137%20121Q165%20121%20187%2096T210%208Q210%20-27%20201%20-60T180%20-117T154%20-158T130%20-185T117%20-194Q113%20-194%20104%20-185T95%20-172Q95%20-168%20106%20-156T131%20-126T157%20-76T173%20-3V9L172%208Q170%207%20167%206T161%203T152%201T140%200Q113%200%2096%2017Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-79%22%20d%3D%22M21%20287Q21%20301%2036%20335T84%20406T158%20442Q199%20442%20224%20419T250%20355Q248%20336%20247%20334Q247%20331%20231%20288T198%20191T182%20105Q182%2062%20196%2045T238%2027Q261%2027%20281%2038T312%2061T339%2094Q339%2095%20344%20114T358%20173T377%20247Q415%20397%20419%20404Q432%20431%20462%20431Q475%20431%20483%20424T494%20412T496%20403Q496%20390%20447%20193T391%20-23Q363%20-106%20294%20-155T156%20-205Q111%20-205%2077%20-183T43%20-117Q43%20-95%2050%20-80T69%20-58T89%20-48T106%20-45Q150%20-45%20150%20-87Q150%20-107%20138%20-122T115%20-142T102%20-147L99%20-148Q101%20-153%20118%20-160T152%20-167H160Q177%20-167%20186%20-165Q219%20-156%20247%20-127T290%20-65T313%20-9T321%2021L315%2017Q309%2013%20296%206T270%20-6Q250%20-11%20231%20-11Q185%20-11%20150%2011T104%2082Q103%2089%20103%20113Q103%20170%20138%20262T173%20379Q173%20380%20173%20381Q173%20390%20173%20393T169%20400T158%20404H154Q131%20404%20112%20385T82%20344T65%20302T57%20280Q55%20278%2041%20278H27Q21%20284%2021%20287Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-29%22%20d%3D%22M60%20749L64%20750Q69%20750%2074%20750H86L114%20726Q208%20641%20251%20514T294%20250Q294%20182%20284%20119T261%2012T224%20-76T186%20-143T145%20-194T113%20-227T90%20-246Q87%20-249%2086%20-250H74Q66%20-250%2063%20-250T58%20-247T55%20-238Q56%20-237%2066%20-225Q221%20-64%20221%20250T66%20725Q56%20737%2055%20738Q55%20746%2060%20749Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-3D%22%20d%3D%22M56%20347Q56%20360%2070%20367H707Q722%20359%20722%20347Q722%20336%20708%20328L390%20327H72Q56%20332%2056%20347ZM56%20153Q56%20168%2072%20173H708Q722%20163%20722%20153Q722%20140%20707%20133H70Q56%20140%2056%20153Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-32%22%20d%3D%22M109%20429Q82%20429%2066%20447T50%20491Q50%20562%20103%20614T235%20666Q326%20666%20387%20610T449%20465Q449%20422%20429%20383T381%20315T301%20241Q265%20210%20201%20149L142%2093L218%2092Q375%2092%20385%2097Q392%2099%20409%20186V189H449V186Q448%20183%20436%2095T421%203V0H50V19V31Q50%2038%2056%2046T86%2081Q115%20113%20136%20137Q145%20147%20170%20174T204%20211T233%20244T261%20278T284%20308T305%20340T320%20369T333%20401T340%20431T343%20464Q343%20527%20309%20573T212%20619Q179%20619%20154%20602T119%20569T109%20550Q109%20549%20114%20549Q132%20549%20151%20535T170%20489Q170%20464%20154%20447T109%20429Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-2B%22%20d%3D%22M56%20237T56%20250T70%20270H369V420L370%20570Q380%20583%20389%20583Q402%20583%20409%20568V270H707Q722%20262%20722%20250T707%20230H409V-68Q401%20-82%20391%20-82H389H387Q375%20-82%20369%20-68V230H70Q56%20237%2056%20250Z%22%3E%3C%2Fpath%3E%0A%3C%2Fdefs%3E%0A%3Cg%20stroke%3D%22currentColor%22%20fill%3D%22currentColor%22%20stroke-width%3D%220%22%20transform%3D%22matrix(1%200%200%20-1%200%200)%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-66%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(550%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(940%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-78%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(1512%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2C%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(1957%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-79%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(2455%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(3122%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-msubsup%22%20transform%3D%22translate(4178%2C0)%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-78%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mn%22%20transform%3D%22translate(572%2C412)%22%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(5427%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-msubsup%22%20transform%3D%22translate(6428%2C0)%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-79%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mn%22%20transform%3D%22translate(499%2C412)%22%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
的等高线:
把方程
%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-msubsup%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-78%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mn%22%20transform%3D%22translate(572%2C412)%22%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(1026%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-79%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(1746%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2212%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mn%22%20transform%3D%22translate(2746%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-33%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(3525%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mn%22%20transform%3D%22translate(4581%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-30%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
看作凸函数
%3Dx%5E2y%3C%2Ftitle%3E%0A%3Cdefs%20aria-hidden%3D%22true%22%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-67%22%20d%3D%22M311%2043Q296%2030%20267%2015T206%200Q143%200%20105%2045T66%20160Q66%20265%20143%20353T314%20442Q361%20442%20401%20394L404%20398Q406%20401%20409%20404T418%20412T431%20419T447%20422Q461%20422%20470%20413T480%20394Q480%20379%20423%20152T363%20-80Q345%20-134%20286%20-169T151%20-205Q10%20-205%2010%20-137Q10%20-111%2028%20-91T74%20-71Q89%20-71%20102%20-80T116%20-111Q116%20-121%20114%20-130T107%20-144T99%20-154T92%20-162L90%20-164H91Q101%20-167%20151%20-167Q189%20-167%20211%20-155Q234%20-144%20254%20-122T282%20-75Q288%20-56%20298%20-13Q311%2035%20311%2043ZM384%20328L380%20339Q377%20350%20375%20354T369%20368T359%20382T346%20393T328%20402T306%20405Q262%20405%20221%20352Q191%20313%20171%20233T151%20117Q151%2038%20213%2038Q269%2038%20323%20108L331%20118L384%20328Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-28%22%20d%3D%22M94%20250Q94%20319%20104%20381T127%20488T164%20576T202%20643T244%20695T277%20729T302%20750H315H319Q333%20750%20333%20741Q333%20738%20316%20720T275%20667T226%20581T184%20443T167%20250T184%2058T225%20-81T274%20-167T316%20-220T333%20-241Q333%20-250%20318%20-250H315H302L274%20-226Q180%20-141%20137%20-14T94%20250Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-78%22%20d%3D%22M52%20289Q59%20331%20106%20386T222%20442Q257%20442%20286%20424T329%20379Q371%20442%20430%20442Q467%20442%20494%20420T522%20361Q522%20332%20508%20314T481%20292T458%20288Q439%20288%20427%20299T415%20328Q415%20374%20465%20391Q454%20404%20425%20404Q412%20404%20406%20402Q368%20386%20350%20336Q290%20115%20290%2078Q290%2050%20306%2038T341%2026Q378%2026%20414%2059T463%20140Q466%20150%20469%20151T485%20153H489Q504%20153%20504%20145Q504%20144%20502%20134Q486%2077%20440%2033T333%20-11Q263%20-11%20227%2052Q186%20-10%20133%20-10H127Q78%20-10%2057%2016T35%2071Q35%20103%2054%20123T99%20143Q142%20143%20142%20101Q142%2081%20130%2066T107%2046T94%2041L91%2040Q91%2039%2097%2036T113%2029T132%2026Q168%2026%20194%2071Q203%2087%20217%20139T245%20247T261%20313Q266%20340%20266%20352Q266%20380%20251%20392T217%20404Q177%20404%20142%20372T93%20290Q91%20281%2088%20280T72%20278H58Q52%20284%2052%20289Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-2C%22%20d%3D%22M78%2035T78%2060T94%20103T137%20121Q165%20121%20187%2096T210%208Q210%20-27%20201%20-60T180%20-117T154%20-158T130%20-185T117%20-194Q113%20-194%20104%20-185T95%20-172Q95%20-168%20106%20-156T131%20-126T157%20-76T173%20-3V9L172%208Q170%207%20167%206T161%203T152%201T140%200Q113%200%2096%2017Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-79%22%20d%3D%22M21%20287Q21%20301%2036%20335T84%20406T158%20442Q199%20442%20224%20419T250%20355Q248%20336%20247%20334Q247%20331%20231%20288T198%20191T182%20105Q182%2062%20196%2045T238%2027Q261%2027%20281%2038T312%2061T339%2094Q339%2095%20344%20114T358%20173T377%20247Q415%20397%20419%20404Q432%20431%20462%20431Q475%20431%20483%20424T494%20412T496%20403Q496%20390%20447%20193T391%20-23Q363%20-106%20294%20-155T156%20-205Q111%20-205%2077%20-183T43%20-117Q43%20-95%2050%20-80T69%20-58T89%20-48T106%20-45Q150%20-45%20150%20-87Q150%20-107%20138%20-122T115%20-142T102%20-147L99%20-148Q101%20-153%20118%20-160T152%20-167H160Q177%20-167%20186%20-165Q219%20-156%20247%20-127T290%20-65T313%20-9T321%2021L315%2017Q309%2013%20296%206T270%20-6Q250%20-11%20231%20-11Q185%20-11%20150%2011T104%2082Q103%2089%20103%20113Q103%20170%20138%20262T173%20379Q173%20380%20173%20381Q173%20390%20173%20393T169%20400T158%20404H154Q131%20404%20112%20385T82%20344T65%20302T57%20280Q55%20278%2041%20278H27Q21%20284%2021%20287Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-29%22%20d%3D%22M60%20749L64%20750Q69%20750%2074%20750H86L114%20726Q208%20641%20251%20514T294%20250Q294%20182%20284%20119T261%2012T224%20-76T186%20-143T145%20-194T113%20-227T90%20-246Q87%20-249%2086%20-250H74Q66%20-250%2063%20-250T58%20-247T55%20-238Q56%20-237%2066%20-225Q221%20-64%20221%20250T66%20725Q56%20737%2055%20738Q55%20746%2060%20749Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-3D%22%20d%3D%22M56%20347Q56%20360%2070%20367H707Q722%20359%20722%20347Q722%20336%20708%20328L390%20327H72Q56%20332%2056%20347ZM56%20153Q56%20168%2072%20173H708Q722%20163%20722%20153Q722%20140%20707%20133H70Q56%20140%2056%20153Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-32%22%20d%3D%22M109%20429Q82%20429%2066%20447T50%20491Q50%20562%20103%20614T235%20666Q326%20666%20387%20610T449%20465Q449%20422%20429%20383T381%20315T301%20241Q265%20210%20201%20149L142%2093L218%2092Q375%2092%20385%2097Q392%2099%20409%20186V189H449V186Q448%20183%20436%2095T421%203V0H50V19V31Q50%2038%2056%2046T86%2081Q115%20113%20136%20137Q145%20147%20170%20174T204%20211T233%20244T261%20278T284%20308T305%20340T320%20369T333%20401T340%20431T343%20464Q343%20527%20309%20573T212%20619Q179%20619%20154%20602T119%20569T109%20550Q109%20549%20114%20549Q132%20549%20151%20535T170%20489Q170%20464%20154%20447T109%20429Z%22%3E%3C%2Fpath%3E%0A%3C%2Fdefs%3E%0A%3Cg%20stroke%3D%22currentColor%22%20fill%3D%22currentColor%22%20stroke-width%3D%220%22%20transform%3D%22matrix(1%200%200%20-1%200%200)%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-67%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(480%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(870%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-78%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(1442%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2C%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(1887%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-79%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(2385%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(3052%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-msubsup%22%20transform%3D%22translate(4108%2C0)%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-78%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mn%22%20transform%3D%22translate(572%2C412)%22%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(5135%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-79%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
的等高线中的一条:
这样
%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-66%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
的等高线,同心圆,的法线就是
%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2207%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(833%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-66%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
:
两者相切就意味着,在切点,两者法线平行:
也就是:
2.2 代数
上面的问题形式化后,用代数表示为(
%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-mtext%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-73%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-75%22%20x%3D%22394%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-62%22%20x%3D%22951%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-6A%22%20x%3D%221507%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-65%22%20x%3D%221814%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-63%22%20x%3D%222258%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-74%22%20x%3D%222703%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-74%22%20x%3D%223342%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-6F%22%20x%3D%223732%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
的意思是服从于,约束于的意思):
只需解如下方程组:
比如下图:
要求
%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-66%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
被
%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-msubsup%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-67%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mn%22%20transform%3D%22translate(477%2C-150)%22%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(1209%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mn%22%20transform%3D%22translate(2265%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-30%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(2765%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2C%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-msubsup%22%20transform%3D%22translate(3211%2C0)%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-67%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mn%22%20transform%3D%22translate(477%2C-150)%22%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(4420%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mn%22%20transform%3D%22translate(5476%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-30%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
约束后的极值,可以证明在极值点
%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2207%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(833%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-66%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
必然在
%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2207%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-msubsup%22%20transform%3D%22translate(833%2C0)%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-67%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mn%22%20transform%3D%22translate(477%2C-150)%22%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(1764%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2C%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(2210%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2207%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-msubsup%22%20transform%3D%22translate(3043%2C0)%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-67%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mn%22%20transform%3D%22translate(477%2C-150)%22%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
张成的空间中。
那么上面的问题形式化后就是:
只需解如下方程组:
更一般的,如果有
%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-6E%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
个约束等式:
只需解如下方程组:
比如,我们要求刚才同心圆的最小值:
那肯定就是原点啦,半径为0肯定就是最小值了。
从代数上看就是要求:
解:
4.1 情况一
我们给它添加一个不等式约束,也就是求:
可以看到,这个不等式约束实际上包含了原点:
所以这个约束等于没有,依然求解:
4.2 情况二
换一个不等式约束:
不等式约束看起来是这样的:
因为同心圆是凸函数的等高线,所以等高线的值是这么排列的:
所以,在不等式约束下,最小值是在边缘相切的地方取得:
和用等式
%3Dx%2By%3D-2%3C%2Ftitle%3E%0A%3Cdefs%20aria-hidden%3D%22true%22%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-68%22%20d%3D%22M137%20683Q138%20683%20209%20688T282%20694Q294%20694%20294%20685Q294%20674%20258%20534Q220%20386%20220%20383Q220%20381%20227%20388Q288%20442%20357%20442Q411%20442%20444%20415T478%20336Q478%20285%20440%20178T402%2050Q403%2036%20407%2031T422%2026Q450%2026%20474%2056T513%20138Q516%20149%20519%20151T535%20153Q555%20153%20555%20145Q555%20144%20551%20130Q535%2071%20500%2033Q466%20-10%20419%20-10H414Q367%20-10%20346%2017T325%2074Q325%2090%20361%20192T398%20345Q398%20404%20354%20404H349Q266%20404%20205%20306L198%20293L164%20158Q132%2028%20127%2016Q114%20-11%2083%20-11Q69%20-11%2059%20-2T48%2016Q48%2030%20121%20320L195%20616Q195%20629%20188%20632T149%20637H128Q122%20643%20122%20645T124%20664Q129%20683%20137%20683Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-28%22%20d%3D%22M94%20250Q94%20319%20104%20381T127%20488T164%20576T202%20643T244%20695T277%20729T302%20750H315H319Q333%20750%20333%20741Q333%20738%20316%20720T275%20667T226%20581T184%20443T167%20250T184%2058T225%20-81T274%20-167T316%20-220T333%20-241Q333%20-250%20318%20-250H315H302L274%20-226Q180%20-141%20137%20-14T94%20250Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-78%22%20d%3D%22M52%20289Q59%20331%20106%20386T222%20442Q257%20442%20286%20424T329%20379Q371%20442%20430%20442Q467%20442%20494%20420T522%20361Q522%20332%20508%20314T481%20292T458%20288Q439%20288%20427%20299T415%20328Q415%20374%20465%20391Q454%20404%20425%20404Q412%20404%20406%20402Q368%20386%20350%20336Q290%20115%20290%2078Q290%2050%20306%2038T341%2026Q378%2026%20414%2059T463%20140Q466%20150%20469%20151T485%20153H489Q504%20153%20504%20145Q504%20144%20502%20134Q486%2077%20440%2033T333%20-11Q263%20-11%20227%2052Q186%20-10%20133%20-10H127Q78%20-10%2057%2016T35%2071Q35%20103%2054%20123T99%20143Q142%20143%20142%20101Q142%2081%20130%2066T107%2046T94%2041L91%2040Q91%2039%2097%2036T113%2029T132%2026Q168%2026%20194%2071Q203%2087%20217%20139T245%20247T261%20313Q266%20340%20266%20352Q266%20380%20251%20392T217%20404Q177%20404%20142%20372T93%20290Q91%20281%2088%20280T72%20278H58Q52%20284%2052%20289Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-2C%22%20d%3D%22M78%2035T78%2060T94%20103T137%20121Q165%20121%20187%2096T210%208Q210%20-27%20201%20-60T180%20-117T154%20-158T130%20-185T117%20-194Q113%20-194%20104%20-185T95%20-172Q95%20-168%20106%20-156T131%20-126T157%20-76T173%20-3V9L172%208Q170%207%20167%206T161%203T152%201T140%200Q113%200%2096%2017Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-79%22%20d%3D%22M21%20287Q21%20301%2036%20335T84%20406T158%20442Q199%20442%20224%20419T250%20355Q248%20336%20247%20334Q247%20331%20231%20288T198%20191T182%20105Q182%2062%20196%2045T238%2027Q261%2027%20281%2038T312%2061T339%2094Q339%2095%20344%20114T358%20173T377%20247Q415%20397%20419%20404Q432%20431%20462%20431Q475%20431%20483%20424T494%20412T496%20403Q496%20390%20447%20193T391%20-23Q363%20-106%20294%20-155T156%20-205Q111%20-205%2077%20-183T43%20-117Q43%20-95%2050%20-80T69%20-58T89%20-48T106%20-45Q150%20-45%20150%20-87Q150%20-107%20138%20-122T115%20-142T102%20-147L99%20-148Q101%20-153%20118%20-160T152%20-167H160Q177%20-167%20186%20-165Q219%20-156%20247%20-127T290%20-65T313%20-9T321%2021L315%2017Q309%2013%20296%206T270%20-6Q250%20-11%20231%20-11Q185%20-11%20150%2011T104%2082Q103%2089%20103%20113Q103%20170%20138%20262T173%20379Q173%20380%20173%20381Q173%20390%20173%20393T169%20400T158%20404H154Q131%20404%20112%20385T82%20344T65%20302T57%20280Q55%20278%2041%20278H27Q21%20284%2021%20287Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-29%22%20d%3D%22M60%20749L64%20750Q69%20750%2074%20750H86L114%20726Q208%20641%20251%20514T294%20250Q294%20182%20284%20119T261%2012T224%20-76T186%20-143T145%20-194T113%20-227T90%20-246Q87%20-249%2086%20-250H74Q66%20-250%2063%20-250T58%20-247T55%20-238Q56%20-237%2066%20-225Q221%20-64%20221%20250T66%20725Q56%20737%2055%20738Q55%20746%2060%20749Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-3D%22%20d%3D%22M56%20347Q56%20360%2070%20367H707Q722%20359%20722%20347Q722%20336%20708%20328L390%20327H72Q56%20332%2056%20347ZM56%20153Q56%20168%2072%20173H708Q722%20163%20722%20153Q722%20140%20707%20133H70Q56%20140%2056%20153Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-2B%22%20d%3D%22M56%20237T56%20250T70%20270H369V420L370%20570Q380%20583%20389%20583Q402%20583%20409%20568V270H707Q722%20262%20722%20250T707%20230H409V-68Q401%20-82%20391%20-82H389H387Q375%20-82%20369%20-68V230H70Q56%20237%2056%20250Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-2212%22%20d%3D%22M84%20237T84%20250T98%20270H679Q694%20262%20694%20250T679%20230H98Q84%20237%2084%20250Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-32%22%20d%3D%22M109%20429Q82%20429%2066%20447T50%20491Q50%20562%20103%20614T235%20666Q326%20666%20387%20610T449%20465Q449%20422%20429%20383T381%20315T301%20241Q265%20210%20201%20149L142%2093L218%2092Q375%2092%20385%2097Q392%2099%20409%20186V189H449V186Q448%20183%20436%2095T421%203V0H50V19V31Q50%2038%2056%2046T86%2081Q115%20113%20136%20137Q145%20147%20170%20174T204%20211T233%20244T261%20278T284%20308T305%20340T320%20369T333%20401T340%20431T343%20464Q343%20527%20309%20573T212%20619Q179%20619%20154%20602T119%20569T109%20550Q109%20549%20114%20549Q132%20549%20151%20535T170%20489Q170%20464%20154%20447T109%20429Z%22%3E%3C%2Fpath%3E%0A%3C%2Fdefs%3E%0A%3Cg%20stroke%3D%22currentColor%22%20fill%3D%22currentColor%22%20stroke-width%3D%220%22%20transform%3D%22matrix(1%200%200%20-1%200%200)%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-68%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(576%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(966%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-78%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(1538%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2C%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(1983%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-79%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(2481%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(3148%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(4204%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-78%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(4999%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(6000%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-79%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(6775%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(7831%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2212%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mn%22%20transform%3D%22translate(8610%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
进行约束效果是一样的:
因此可以通过解方程组求出答案:
4.3 新增的条件
仔细研究,不等式实际上带来了新的条件。
同心圆是凸函数的等高线,等高线的值如下排列,所以在相切处,法线也就是
%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2207%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(833%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-66%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
的方向如下(法线也就是梯度,指向增长最快的方向,也就是等高线的值变大的方向):
而凸函数
%3C%2Ftitle%3E%0A%3Cdefs%20aria-hidden%3D%22true%22%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-68%22%20d%3D%22M137%20683Q138%20683%20209%20688T282%20694Q294%20694%20294%20685Q294%20674%20258%20534Q220%20386%20220%20383Q220%20381%20227%20388Q288%20442%20357%20442Q411%20442%20444%20415T478%20336Q478%20285%20440%20178T402%2050Q403%2036%20407%2031T422%2026Q450%2026%20474%2056T513%20138Q516%20149%20519%20151T535%20153Q555%20153%20555%20145Q555%20144%20551%20130Q535%2071%20500%2033Q466%20-10%20419%20-10H414Q367%20-10%20346%2017T325%2074Q325%2090%20361%20192T398%20345Q398%20404%20354%20404H349Q266%20404%20205%20306L198%20293L164%20158Q132%2028%20127%2016Q114%20-11%2083%20-11Q69%20-11%2059%20-2T48%2016Q48%2030%20121%20320L195%20616Q195%20629%20188%20632T149%20637H128Q122%20643%20122%20645T124%20664Q129%20683%20137%20683Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-28%22%20d%3D%22M94%20250Q94%20319%20104%20381T127%20488T164%20576T202%20643T244%20695T277%20729T302%20750H315H319Q333%20750%20333%20741Q333%20738%20316%20720T275%20667T226%20581T184%20443T167%20250T184%2058T225%20-81T274%20-167T316%20-220T333%20-241Q333%20-250%20318%20-250H315H302L274%20-226Q180%20-141%20137%20-14T94%20250Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-78%22%20d%3D%22M52%20289Q59%20331%20106%20386T222%20442Q257%20442%20286%20424T329%20379Q371%20442%20430%20442Q467%20442%20494%20420T522%20361Q522%20332%20508%20314T481%20292T458%20288Q439%20288%20427%20299T415%20328Q415%20374%20465%20391Q454%20404%20425%20404Q412%20404%20406%20402Q368%20386%20350%20336Q290%20115%20290%2078Q290%2050%20306%2038T341%2026Q378%2026%20414%2059T463%20140Q466%20150%20469%20151T485%20153H489Q504%20153%20504%20145Q504%20144%20502%20134Q486%2077%20440%2033T333%20-11Q263%20-11%20227%2052Q186%20-10%20133%20-10H127Q78%20-10%2057%2016T35%2071Q35%20103%2054%20123T99%20143Q142%20143%20142%20101Q142%2081%20130%2066T107%2046T94%2041L91%2040Q91%2039%2097%2036T113%2029T132%2026Q168%2026%20194%2071Q203%2087%20217%20139T245%20247T261%20313Q266%20340%20266%20352Q266%20380%20251%20392T217%20404Q177%20404%20142%20372T93%20290Q91%20281%2088%20280T72%20278H58Q52%20284%2052%20289Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-2C%22%20d%3D%22M78%2035T78%2060T94%20103T137%20121Q165%20121%20187%2096T210%208Q210%20-27%20201%20-60T180%20-117T154%20-158T130%20-185T117%20-194Q113%20-194%20104%20-185T95%20-172Q95%20-168%20106%20-156T131%20-126T157%20-76T173%20-3V9L172%208Q170%207%20167%206T161%203T152%201T140%200Q113%200%2096%2017Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-79%22%20d%3D%22M21%20287Q21%20301%2036%20335T84%20406T158%20442Q199%20442%20224%20419T250%20355Q248%20336%20247%20334Q247%20331%20231%20288T198%20191T182%20105Q182%2062%20196%2045T238%2027Q261%2027%20281%2038T312%2061T339%2094Q339%2095%20344%20114T358%20173T377%20247Q415%20397%20419%20404Q432%20431%20462%20431Q475%20431%20483%20424T494%20412T496%20403Q496%20390%20447%20193T391%20-23Q363%20-106%20294%20-155T156%20-205Q111%20-205%2077%20-183T43%20-117Q43%20-95%2050%20-80T69%20-58T89%20-48T106%20-45Q150%20-45%20150%20-87Q150%20-107%20138%20-122T115%20-142T102%20-147L99%20-148Q101%20-153%20118%20-160T152%20-167H160Q177%20-167%20186%20-165Q219%20-156%20247%20-127T290%20-65T313%20-9T321%2021L315%2017Q309%2013%20296%206T270%20-6Q250%20-11%20231%20-11Q185%20-11%20150%2011T104%2082Q103%2089%20103%20113Q103%20170%20138%20262T173%20379Q173%20380%20173%20381Q173%20390%20173%20393T169%20400T158%20404H154Q131%20404%20112%20385T82%20344T65%20302T57%20280Q55%20278%2041%20278H27Q21%20284%2021%20287Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-29%22%20d%3D%22M60%20749L64%20750Q69%20750%2074%20750H86L114%20726Q208%20641%20251%20514T294%20250Q294%20182%20284%20119T261%2012T224%20-76T186%20-143T145%20-194T113%20-227T90%20-246Q87%20-249%2086%20-250H74Q66%20-250%2063%20-250T58%20-247T55%20-238Q56%20-237%2066%20-225Q221%20-64%20221%20250T66%20725Q56%20737%2055%20738Q55%20746%2060%20749Z%22%3E%3C%2Fpath%3E%0A%3C%2Fdefs%3E%0A%3Cg%20stroke%3D%22currentColor%22%20fill%3D%22currentColor%22%20stroke-width%3D%220%22%20transform%3D%22matrix(1%200%200%20-1%200%200)%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-68%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(576%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(966%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-78%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(1538%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2C%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(1983%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-79%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(2481%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
的法线
%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2207%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(833%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-68%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
也一样指向
%3C%2Ftitle%3E%0A%3Cdefs%20aria-hidden%3D%22true%22%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-68%22%20d%3D%22M137%20683Q138%20683%20209%20688T282%20694Q294%20694%20294%20685Q294%20674%20258%20534Q220%20386%20220%20383Q220%20381%20227%20388Q288%20442%20357%20442Q411%20442%20444%20415T478%20336Q478%20285%20440%20178T402%2050Q403%2036%20407%2031T422%2026Q450%2026%20474%2056T513%20138Q516%20149%20519%20151T535%20153Q555%20153%20555%20145Q555%20144%20551%20130Q535%2071%20500%2033Q466%20-10%20419%20-10H414Q367%20-10%20346%2017T325%2074Q325%2090%20361%20192T398%20345Q398%20404%20354%20404H349Q266%20404%20205%20306L198%20293L164%20158Q132%2028%20127%2016Q114%20-11%2083%20-11Q69%20-11%2059%20-2T48%2016Q48%2030%20121%20320L195%20616Q195%20629%20188%20632T149%20637H128Q122%20643%20122%20645T124%20664Q129%20683%20137%20683Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-28%22%20d%3D%22M94%20250Q94%20319%20104%20381T127%20488T164%20576T202%20643T244%20695T277%20729T302%20750H315H319Q333%20750%20333%20741Q333%20738%20316%20720T275%20667T226%20581T184%20443T167%20250T184%2058T225%20-81T274%20-167T316%20-220T333%20-241Q333%20-250%20318%20-250H315H302L274%20-226Q180%20-141%20137%20-14T94%20250Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-78%22%20d%3D%22M52%20289Q59%20331%20106%20386T222%20442Q257%20442%20286%20424T329%20379Q371%20442%20430%20442Q467%20442%20494%20420T522%20361Q522%20332%20508%20314T481%20292T458%20288Q439%20288%20427%20299T415%20328Q415%20374%20465%20391Q454%20404%20425%20404Q412%20404%20406%20402Q368%20386%20350%20336Q290%20115%20290%2078Q290%2050%20306%2038T341%2026Q378%2026%20414%2059T463%20140Q466%20150%20469%20151T485%20153H489Q504%20153%20504%20145Q504%20144%20502%20134Q486%2077%20440%2033T333%20-11Q263%20-11%20227%2052Q186%20-10%20133%20-10H127Q78%20-10%2057%2016T35%2071Q35%20103%2054%20123T99%20143Q142%20143%20142%20101Q142%2081%20130%2066T107%2046T94%2041L91%2040Q91%2039%2097%2036T113%2029T132%2026Q168%2026%20194%2071Q203%2087%20217%20139T245%20247T261%20313Q266%20340%20266%20352Q266%20380%20251%20392T217%20404Q177%20404%20142%20372T93%20290Q91%20281%2088%20280T72%20278H58Q52%20284%2052%20289Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-2C%22%20d%3D%22M78%2035T78%2060T94%20103T137%20121Q165%20121%20187%2096T210%208Q210%20-27%20201%20-60T180%20-117T154%20-158T130%20-185T117%20-194Q113%20-194%20104%20-185T95%20-172Q95%20-168%20106%20-156T131%20-126T157%20-76T173%20-3V9L172%208Q170%207%20167%206T161%203T152%201T140%200Q113%200%2096%2017Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-79%22%20d%3D%22M21%20287Q21%20301%2036%20335T84%20406T158%20442Q199%20442%20224%20419T250%20355Q248%20336%20247%20334Q247%20331%20231%20288T198%20191T182%20105Q182%2062%20196%2045T238%2027Q261%2027%20281%2038T312%2061T339%2094Q339%2095%20344%20114T358%20173T377%20247Q415%20397%20419%20404Q432%20431%20462%20431Q475%20431%20483%20424T494%20412T496%20403Q496%20390%20447%20193T391%20-23Q363%20-106%20294%20-155T156%20-205Q111%20-205%2077%20-183T43%20-117Q43%20-95%2050%20-80T69%20-58T89%20-48T106%20-45Q150%20-45%20150%20-87Q150%20-107%20138%20-122T115%20-142T102%20-147L99%20-148Q101%20-153%20118%20-160T152%20-167H160Q177%20-167%20186%20-165Q219%20-156%20247%20-127T290%20-65T313%20-9T321%2021L315%2017Q309%2013%20296%206T270%20-6Q250%20-11%20231%20-11Q185%20-11%20150%2011T104%2082Q103%2089%20103%20113Q103%20170%20138%20262T173%20379Q173%20380%20173%20381Q173%20390%20173%20393T169%20400T158%20404H154Q131%20404%20112%20385T82%20344T65%20302T57%20280Q55%20278%2041%20278H27Q21%20284%2021%20287Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-29%22%20d%3D%22M60%20749L64%20750Q69%20750%2074%20750H86L114%20726Q208%20641%20251%20514T294%20250Q294%20182%20284%20119T261%2012T224%20-76T186%20-143T145%20-194T113%20-227T90%20-246Q87%20-249%2086%20-250H74Q66%20-250%2063%20-250T58%20-247T55%20-238Q56%20-237%2066%20-225Q221%20-64%20221%20250T66%20725Q56%20737%2055%20738Q55%20746%2060%20749Z%22%3E%3C%2Fpath%3E%0A%3C%2Fdefs%3E%0A%3Cg%20stroke%3D%22currentColor%22%20fill%3D%22currentColor%22%20stroke-width%3D%220%22%20transform%3D%22matrix(1%200%200%20-1%200%200)%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-68%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(576%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(966%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-78%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(1538%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2C%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(1983%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-79%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(2481%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
增长的方向,这个方向正好和
%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2207%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(833%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-66%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
相反:
因此:
其中,
%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-3BC%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(881%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2265%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mn%22%20transform%3D%22translate(1937%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-30%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
就表明
%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20class%3D%22mjx-svg-mrow%22%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2207%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(833%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-66%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mo%22%20transform%3D%22translate(1384%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2C%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(1829%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2207%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20class%3D%22mjx-svg-mi%22%20transform%3D%22translate(2662%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-68%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E)
方向相反。
因此刚才的方程组可以再增加一个条件:
因此,综合上面的所有情况,可以把求如下的极值:
通过解下面这个方程组来得到答案:
这个方程组也就是所谓的KKT条件。
进一步解释下方程组的各个项: